Dalamgeometri Euklid, sebuah lingkaran adalah himpunan semua titik pada bidang dalam jarak tertentu, yang disebut jari-jari, dari suatu titik tertentu, yang disebut pusat.Lingkaran adalah contoh dari kurva tertutup sederhana, membagi bidang menjadi bagian dalam dan bagian luar. Elemen lingkaran Elemen-elemen yang terdapat pada lingkaran,
Pengertian perbandingan dalam matematika adalah membandingkan dua nilai atau lebih dari suatu besaran yang sejenis dan dinyatakan dengan cara yang sederhana. Dalam kehidupan kita sehari-hari kita biasa membandingkan ukuran suatu benda dengan benda lain. Contohnya kita membandingkan ukuran suatu benda dengan benda lain. Dalam hal ini ukuran benda yang dibandingkan bisa lebih kecil atau lebih besar. Contohnya kita dapat membandingkan ukuran bola tenis dengan bola pingpong yang lebih kecil dan kita juga bisa membandingkan ukuran bola tenis dengan bola voli yang lebih kita mengetahui angka besaran yang dibandingkan, maka kita akan lebih mudah membandingkannya karena angka-angka yang dibandingkan sudah tersedia. Namun, kadangkala kita harus menghitung terlebih dahulu besaran yang dibandingkan sebelum kita dapat membandingkan kedua besaran tersebut. Sebenarnya kita tidak harus menghitung besaran yang dibandingkan jika kita mengetahui rumus menghitung besaran yang ingin dibandingkan, caranya dengan membandingkan langsung rumus yang ini membahas tentang perbandingan luas dua lingkaran jika diketahui jari-jari radius atau diameternya. Kita mengenal dengan baik rumus luas lingkaran. Oleh karena itu, kita akan membandingkan rumus luas kedua lingkaran tersebut untuk menyederhanakan Luas LingkaranDidefinisikan bahwa luas lingkaran sama dengan nilai konstanta lingkaran Ο dengan kuadrat jari-jari. Jika jari-jari lingkaran adalah r, maka rumus luas lingkaran dapat dituliskan sebagai berikut. L = bahwa diameter sama dengan dua kali jari-jari Rumus D = Jika dinyatakan dalam diameter maka rumus luas lingkaran adalah sebagai berikut. L = Perbandingan Luas Lingkaran Berdasarkan Jari-Jari Misalkan kita ingin membandingkan luas sebuah lingkaran dengan jari jari r1 dengan luas lingkaran lainnya dengan jari-jari r2, maka kita dapat menuliskan perbandingannya sebagai berikut. L1 L2 = suatu perbandingan, faktor pengali yang sama dapat dihilangkan. Dalam hal ini konstanta lingkaran Ο dapat dihilangkan, sehingga persamaannya menjadi lebih sederhana sebagai berikut. L1 L2 = r12 r22Misalkan kita ingin membandingkan luas dua lingkaran dengan jari-jari masing-masing 10 cm dan 20 cm, maka kita dapat menggunakan rumus perbandingan luas lingkaran di atas sebagai berikut. L1 L2 = r12 r22 = 102 202 = 100 400 = 1 4 Jadi perbandingan luas kedua lingkaran tersebut adalah 1 Perbandingan Luas Lingkaran Berdasarkan DiameterMisalkan kita ingin membandingkan luas sebuah lingkaran dengan diameter D1 dengan luas lingkaran lainnya dengan diameter D2, maka kita dapat menuliskan perbandingannya sebagai berikut. L1 L2 = suatu perbandingan, faktor pengali yang sama dapat dihilangkan. Dalam hal ini angka ΒΌ dan Ο dapat dihilangkan, sehingga persamaannya menjadi lebih sederhana sebagai berikut. L1 L2 = D12 D22Misalkan kita ingin membandingkan luas dua lingkaran dengan jari jari masing-masing 10 cm dan 20 cm menggunakan ukuran diameternya, maka kita dapat menggunakan rumus perbandingan luas lingkaran di atas sebagai berikut. D = D1 = = 2 x 10 cm = 20 cm D2 = = 2 x 20 cm = 40 cm L1 L2 = D12 D22 = 202 402 = 400 = 1 4 Jadi perbandingan luas kedua lingkaran tersebut adalah 1 Rumus perbandingan luas dua lingkaran adalah sebagai berikut. L1 L2 = r12 r22 atau L1 L2 = = D12 D22Contoh Cara Menentukan Perbandingan Luas LingkaranContoh Soal 1 Soal Tentukan perbandingan luas lingkaran yang berjari-jari 3 cm dengan luas lingkaran yang berjari-jari 6 cm ! Jawab r1 = 3 cm r2 = 6 cm L1 L2 = r12 r22 = 32 62 = 9 36 = 14 Jadi perbandingan luas kedua lingkaran tersebut adalah 14Contoh Soal 2 Soal Tentukan perbandingan luas tiga lingkaran yang masing-masing berdiameter 20 cm, 40 cm, dan 60 cm ! Jawab r1 = 20 cm r2 = 40 cm r3 = 60 cm L1 L2 L3 = r12 r22 r32 = 202 402 602 = 400 = 149 Jadi perbandingan luas ketiga lingkaran tersebut adalah 14 Soal 3 Soal Tentukan perbandingan luas lingkaran yang mempunyai diameter 8 cm dan 12 cm ! Jawab D1 = 8 cm D2 = 12 cm L1 L2 = D12 D22 = 82 122 = 64144 = 49 Jadi perbandingan luas kedua lingkaran tersebut adalah 4 Soal 4 Soal Tentukan perbandingan luas lingkaran yg diameternya 9 cm dan 12 cm ! Jawab D1 = 9 cm D2 = 12 cm L1 L2 = D12 D22 = 92 122 = 81144 = 916 Jadi perbandingan luas kedua lingkaran tersebut adalah 916Contoh Soal 5 Soal Tentukan perbandingan luas lingkaran dengan diameter 2 cm dan luas lingkaran dengan diameter 4 cm ! Jawab D1 = 2 cm D2 = 4 cm L1 L2 = D12 D22 = 22 42 = 416 = 14 Jadi perbandingan luas kedua lingkaran tersebut adalah 1 Soal 6 Soal Tentukan perbandingan luas lingkaran berdiameter 6 cm dengan luas lingkaran berdiameter 8 cm ! Jawab D1 = 6 cm D2 = 8 cm L1 L2 = D12 D22 = 62 82 = 36 64 = 916 Jadi perbandingan luas kedua lingkaran tersebut adalah 916Perbandinganluas dua buah lingkaran adalah 36 : 64. Hitunglah a. perbandingan keliling kedua lingkaran; b. selisih keliling kedua lingkaran; N M L O K Gambar 6.24 B C D O A Gambar 6.25 161 Lingkaran Kerjakan soal-soal berikut di
xyang memenuhi adalah . A. 0.1 B. 5 C. 10 D. 25 E. 100 9. Seorang siswa harus mengerjakan 5 soal juring yang dihitung adalah juring terluas, atau luas lingkaran. Tanda mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga sebenarnya hanya perlu Padalingkaran tersebut terdapat dua buah juring, yaitu AOB dengan sudut AOB = 30ΒΊ dan juring kedua COD dengan sudut COD = 120ΒΊ. Peluang Suatu kejadian yang diinginkan adalah perbandingan banyaknya titik sampel kejadian diinginkan itu dengan banyaknya anggota ruang sampel kejadian tersebut. luas lingkaran x t Luas = luas alas + luas Persediaanbuah dengan jumlah yang sama adalah Nama buah dan banyaknya: Apel: 25 Mangga: 10 Jeruk: 15 Pisang: 25 Manggis: 8 Alpukat: 5 Jumlah: 88. a. manga dan manggis b. pisang dan alpukat c. apel dan pisang d. jeruk dan alpukat. Kunci: C. Pembahasan: Berdasarkan tabel persediaan buah Dimas dengan jumlah yang sama adalah apel dan SoalNo. 1. Diberikan persamaan satu variabel berikut ini: 10x + 12 = 3x + 33. Tentukan nilai dari 2x + 5. Pembahasan. Satukan variabel x dengan x dan angka dengan angka. Gunakan perpindahan ruas. Untuk operasi penjumlahan dan pengurangan, + pindah ruas jadi β dan sebaliknya β pindah ruas menjadi +. 10x + 12 = 3x + 33. Duabuah lingkaran l1 dan l2 masing-masing berjari-jari 1 cm saling Masing-masing bagian kemudian dibentuk menjadi sebuah persegi. Perbandingan luas kedua persegi adalah 1) 3600 8) cm 2 15) lingkaran 22) 12,5 cm 2 2) 9) 15 cm2 16) 23) 3) 10) 8:105 17) cm2 24) Untuk soal ini adalah kombinasi 5 dari 25 orang. 2. Dalam hal ini ada 2 .